Face Alignment in Full Pose Range: A 3D Total Solution

نویسندگان

  • Xiangyu Zhu
  • Xiaoming Liu
  • Zhen Lei
  • Stan Z. Li
چکیده

Face alignment, which fits a face model to an image and extracts the semantic meanings of facial pixels, has been an important topic in the computer vision community. However, most algorithms are designed for faces in small to medium poses (yaw angle is smaller than 45◦), which lack the ability to align faces in large poses up to 90◦. The challenges are three-fold. Firstly, the commonly used landmark face model assumes that all the landmarks are visible and is therefore not suitable for large poses. Secondly, the face appearance varies more drastically across large poses, from the frontal view to the profile view. Thirdly, labelling landmarks in large poses is extremely challenging since the invisible landmarks have to be guessed. In this paper, we propose to tackle these three challenges in an new alignment framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D Morphable Model (3DMM) is fitted to the image via Cascaded Convolutional Neural Networks. We also utilize 3D information to synthesize face images in profile views to provide abundant samples for training. Experiments on the challenging AFLW database show that the proposed approach achieves significant improvements over the state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Face Recognition using Patch Geodesic Derivative Pattern

In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...

متن کامل

Pose - Invariant Face Recognition with Parametric Linear

We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...

متن کامل

Towards Arbitrary-View Face Alignment by Recommendation Trees

Learning to simultaneously handle face alignment of arbitrary views, e.g. frontal and profile views, appears to be more challenging than we thought. The difficulties lay in i) accommodating the complex appearance-shape relations exhibited in different views, and ii) encompassing the varying landmark point sets due to self-occlusion and different landmark protocols. Most existing studies approac...

متن کامل

Face Alignment Assisted by Head Pose Estimation

In this paper we propose supervised initialisation scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network mode...

متن کامل

3D Face Recognition using ICP and Geodesic Computation Coupled Approach

In this paper, we present a new face recognition approach based on dimensional surface matching. While most of existing methods use facial intensity images, a newest ones focus on introducing depth information to surmount some of classical face recognition problems such as pose, illumination, and facial expression variations. The presented matching algorithm is based first on ICP (Iterative Clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015